Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(5): 1961-1965, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38099702

RESUMO

Galvinoxyl, as one of the most extensively studied organic stable free radicals, exhibits a notable phase transition from a high-temperature (HT) phase with a ferromagnetic (FM) intermolecular interaction to a low-temperature (LT) phase with an antiferromagnetic (AFM) coupling at 85 K. Despite significant research efforts, the crystal structure of the AFM LT phase has remained elusive. This study successfully elucidates the crystal structure of the LT phase, which belongs to the P1̄ space group. The crystal structure of the LT phase is found to consist of a distorted dimer, wherein the distortion arises from the formation of short intermolecular distances between anti-node carbons in the singly-occupied molecular orbital (SOMO). Starting from the structure of the LT phase, wave function calculations show that the AFM coupling 2J/kB varies significantly from -1069 K to -54 K due to a parallel shift of the molecular planes within the dimer.

2.
Inorg Chem ; 62(14): 5737-5743, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36971364

RESUMO

Quantum entanglement between the spin states of a metal center and radical ligands is suggested in an iron(II) [Fe(dipyvd)2]2+ compound (dipyvd = 1-isopropyl-3,5-dipyridil-6-oxoverdazyl). Wave function ab initio (Difference Dedicated Configuration Interaction, DDCI) inspections were carried out to stress the versatility of local spin states. We named this phenomenon excited state spinmerism, in reference to our previous work (see Roseiro et al., ChemPhysChem 2022, e202200478) where we introduced the concept of spinmerism as an extension of mesomerism to spin degrees of freedom. The construction of localized molecular orbitals allows for a reading of the wave functions and projections onto the local spin states. The low-energy spectrum is well-depicted by a Heisenberg picture. A 60 cm-1 ferromagnetic interaction is calculated between the radical ligands with the Stotal = 0 and 1 states largely dominated by a local low-spin SFe = 0. In contrast, the higher-lying Stotal = 2 states are superpositions of the local SFe = 1 (17%, 62%) and SFe = 2 (72%, 21%) spin states. Such mixing extends the traditional picture of a high-field d6 Tanabe-Sugano diagram. Even in the absence of spin-orbit coupling, the avoided crossing between different local spin states is triggered by the field generated by radical ligands. This puzzling scenario emerges from versatile local spin states in compounds which extend the traditional views in molecular magnetism.

3.
Chemphyschem ; 24(2): e202200478, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36161748

RESUMO

Molecular platforms are regarded as promising candidates in the generation of units of information for quantum computing. Herein, a strategy combining spin-crossover metal ions and radical ligands is proposed from a model Hamiltonian first restricted to exchange interactions. Unusual spin states structures emerge from the linkage of a singlet/triplet commutable metal centre with two doublet-radical ligands. The ground state nature is modulated by charge transfers and can exhibit a mixture of triplet and singlet local metal spin states. Besides, the superposition reaches a maximum for 2 K M = K 1 + K 2 ${2{K}_{M}={K}_{1}+{K}_{2}}$ , suggesting a necessary competition between the intramolecular K M ${{K}_{M}}$ and inter-metal-ligand K 1 ${{K}_{1}}$ and K 2 ${{K}_{2}}$ direct exchange interactions. The results promote spinmerism, an original manifestation of quantum entanglement between the spin states of a metal centre and radical ligands. The study provides insights into spin-coupled compounds and inspiration for the development of molecular spin-qubits.


Assuntos
Metodologias Computacionais , Teoria Quântica , Ligantes , Metais , Íons
4.
Phys Chem Chem Phys ; 24(26): 15945-15950, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730339

RESUMO

In the screening of compounds for singlet fission, the relative energies of the constitutive units are decisive to fulfil the thermodynamic rules. From a model Hamiltonian constructed on the local spin states of an active chromophore and its environment, it is suggested that embedding greatly influences the energy differences of the active monomer spin states. Even in the absence of charge transfer, the field generated by a singlet environment produces an increase of the [E(S1) - E(S0)]/[E(T1) - E(S0)] critical ratio by up to 6% as compared to the one of a free chromophore. Besides, variations are observed when the intimate electronic structure of the singlet environment is modified. This propensity towards singlet fission is even more pronounced (10%) when the environment is switched to the triplet state. Finally, the embedding is likely to reverse the spin state ordering in the limit of vanishing atomic orbital overlaps. Despite its simplicity, the model stresses the importance of the environment spin nature in the quest for singlet fission candidates, and more generally in spectroscopy analysis.

5.
Chemphyschem ; 23(9): e202100801, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212147

RESUMO

The spin states of a Co(II) oxoverdazyl compound are investigated by means of wavefunction-based calculations. Within a ca. 233 K energy window, the ground state and excited states display a structure-sensitive admixture of low-spin SM =1/2 in a dominant high-spin SM =3/2 Co(II) ion as indicated by the localized molecular orbitals. The puzzling spin zoology that results from the coupling between open-shell radical ligands and a spin-crossover metal ion gives rise to this unusual scenario, which extends the views in molecular magnetism. In agreement with experimental observation, the low-energy spectroscopy is very sensitive to deformations of the coordination sphere, and a growing admixture of Co(II) low-spin is evidenced from the calculations. In analogy with mesomerism that accounts for charge delocalization, entanglement combines different local spin states to generate a given total spin multiplicity, a spinmerism phenomenon.


Assuntos
Cobalto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...